Рассчитать высоту треугольника со сторонами 55, 41 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{55 + 41 + 26}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-55)(61-41)(61-26)}}{41}\normalsize = 24.6908307}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-55)(61-41)(61-26)}}{55}\normalsize = 18.405892}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-55)(61-41)(61-26)}}{26}\normalsize = 38.9355407}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 55, 41 и 26 равна 24.6908307
Высота треугольника опущенная с вершины A на сторону BC со сторонами 55, 41 и 26 равна 18.405892
Высота треугольника опущенная с вершины C на сторону AB со сторонами 55, 41 и 26 равна 38.9355407
Ссылка на результат
?n1=55&n2=41&n3=26
Найти высоту треугольника со сторонами 143, 141 и 52
Найти высоту треугольника со сторонами 88, 79 и 74
Найти высоту треугольника со сторонами 38, 23 и 22
Найти высоту треугольника со сторонами 50, 35 и 19
Найти высоту треугольника со сторонами 117, 105 и 87
Найти высоту треугольника со сторонами 136, 86 и 85
Найти высоту треугольника со сторонами 88, 79 и 74
Найти высоту треугольника со сторонами 38, 23 и 22
Найти высоту треугольника со сторонами 50, 35 и 19
Найти высоту треугольника со сторонами 117, 105 и 87
Найти высоту треугольника со сторонами 136, 86 и 85