Рассчитать высоту треугольника со сторонами 55, 46 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{55 + 46 + 34}{2}} \normalsize = 67.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67.5(67.5-55)(67.5-46)(67.5-34)}}{46}\normalsize = 33.8938334}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67.5(67.5-55)(67.5-46)(67.5-34)}}{55}\normalsize = 28.3475698}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67.5(67.5-55)(67.5-46)(67.5-34)}}{34}\normalsize = 45.8563628}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 55, 46 и 34 равна 33.8938334
Высота треугольника опущенная с вершины A на сторону BC со сторонами 55, 46 и 34 равна 28.3475698
Высота треугольника опущенная с вершины C на сторону AB со сторонами 55, 46 и 34 равна 45.8563628
Ссылка на результат
?n1=55&n2=46&n3=34
Найти высоту треугольника со сторонами 137, 133 и 72
Найти высоту треугольника со сторонами 107, 105 и 46
Найти высоту треугольника со сторонами 109, 79 и 63
Найти высоту треугольника со сторонами 115, 88 и 62
Найти высоту треугольника со сторонами 111, 103 и 95
Найти высоту треугольника со сторонами 109, 107 и 28
Найти высоту треугольника со сторонами 107, 105 и 46
Найти высоту треугольника со сторонами 109, 79 и 63
Найти высоту треугольника со сторонами 115, 88 и 62
Найти высоту треугольника со сторонами 111, 103 и 95
Найти высоту треугольника со сторонами 109, 107 и 28