Рассчитать высоту треугольника со сторонами 55, 48 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{55 + 48 + 9}{2}} \normalsize = 56}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{56(56-55)(56-48)(56-9)}}{48}\normalsize = 6.04611905}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{56(56-55)(56-48)(56-9)}}{55}\normalsize = 5.27661299}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{56(56-55)(56-48)(56-9)}}{9}\normalsize = 32.2459683}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 55, 48 и 9 равна 6.04611905
Высота треугольника опущенная с вершины A на сторону BC со сторонами 55, 48 и 9 равна 5.27661299
Высота треугольника опущенная с вершины C на сторону AB со сторонами 55, 48 и 9 равна 32.2459683
Ссылка на результат
?n1=55&n2=48&n3=9
Найти высоту треугольника со сторонами 107, 102 и 65
Найти высоту треугольника со сторонами 134, 84 и 73
Найти высоту треугольника со сторонами 119, 105 и 30
Найти высоту треугольника со сторонами 150, 145 и 44
Найти высоту треугольника со сторонами 148, 97 и 95
Найти высоту треугольника со сторонами 78, 75 и 48
Найти высоту треугольника со сторонами 134, 84 и 73
Найти высоту треугольника со сторонами 119, 105 и 30
Найти высоту треугольника со сторонами 150, 145 и 44
Найти высоту треугольника со сторонами 148, 97 и 95
Найти высоту треугольника со сторонами 78, 75 и 48