Рассчитать высоту треугольника со сторонами 55, 49 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{55 + 49 + 36}{2}} \normalsize = 70}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70(70-55)(70-49)(70-36)}}{49}\normalsize = 35.3409054}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70(70-55)(70-49)(70-36)}}{55}\normalsize = 31.4855339}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70(70-55)(70-49)(70-36)}}{36}\normalsize = 48.102899}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 55, 49 и 36 равна 35.3409054
Высота треугольника опущенная с вершины A на сторону BC со сторонами 55, 49 и 36 равна 31.4855339
Высота треугольника опущенная с вершины C на сторону AB со сторонами 55, 49 и 36 равна 48.102899
Ссылка на результат
?n1=55&n2=49&n3=36
Найти высоту треугольника со сторонами 138, 134 и 128
Найти высоту треугольника со сторонами 137, 128 и 22
Найти высоту треугольника со сторонами 96, 88 и 87
Найти высоту треугольника со сторонами 97, 79 и 77
Найти высоту треугольника со сторонами 110, 87 и 25
Найти высоту треугольника со сторонами 79, 69 и 24
Найти высоту треугольника со сторонами 137, 128 и 22
Найти высоту треугольника со сторонами 96, 88 и 87
Найти высоту треугольника со сторонами 97, 79 и 77
Найти высоту треугольника со сторонами 110, 87 и 25
Найти высоту треугольника со сторонами 79, 69 и 24