Рассчитать высоту треугольника со сторонами 55, 52 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{55 + 52 + 32}{2}} \normalsize = 69.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69.5(69.5-55)(69.5-52)(69.5-32)}}{52}\normalsize = 31.2779091}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69.5(69.5-55)(69.5-52)(69.5-32)}}{55}\normalsize = 29.5718414}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69.5(69.5-55)(69.5-52)(69.5-32)}}{32}\normalsize = 50.8266023}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 55, 52 и 32 равна 31.2779091
Высота треугольника опущенная с вершины A на сторону BC со сторонами 55, 52 и 32 равна 29.5718414
Высота треугольника опущенная с вершины C на сторону AB со сторонами 55, 52 и 32 равна 50.8266023
Ссылка на результат
?n1=55&n2=52&n3=32
Найти высоту треугольника со сторонами 125, 72 и 72
Найти высоту треугольника со сторонами 116, 79 и 38
Найти высоту треугольника со сторонами 87, 60 и 35
Найти высоту треугольника со сторонами 86, 78 и 41
Найти высоту треугольника со сторонами 90, 86 и 41
Найти высоту треугольника со сторонами 142, 118 и 63
Найти высоту треугольника со сторонами 116, 79 и 38
Найти высоту треугольника со сторонами 87, 60 и 35
Найти высоту треугольника со сторонами 86, 78 и 41
Найти высоту треугольника со сторонами 90, 86 и 41
Найти высоту треугольника со сторонами 142, 118 и 63