Рассчитать высоту треугольника со сторонами 55, 52 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{55 + 52 + 33}{2}} \normalsize = 70}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70(70-55)(70-52)(70-33)}}{52}\normalsize = 32.1631381}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70(70-55)(70-52)(70-33)}}{55}\normalsize = 30.4087852}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70(70-55)(70-52)(70-33)}}{33}\normalsize = 50.6813086}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 55, 52 и 33 равна 32.1631381
Высота треугольника опущенная с вершины A на сторону BC со сторонами 55, 52 и 33 равна 30.4087852
Высота треугольника опущенная с вершины C на сторону AB со сторонами 55, 52 и 33 равна 50.6813086
Ссылка на результат
?n1=55&n2=52&n3=33
Найти высоту треугольника со сторонами 108, 95 и 81
Найти высоту треугольника со сторонами 127, 116 и 64
Найти высоту треугольника со сторонами 147, 111 и 41
Найти высоту треугольника со сторонами 12, 10 и 8
Найти высоту треугольника со сторонами 57, 54 и 23
Найти высоту треугольника со сторонами 77, 44 и 43
Найти высоту треугольника со сторонами 127, 116 и 64
Найти высоту треугольника со сторонами 147, 111 и 41
Найти высоту треугольника со сторонами 12, 10 и 8
Найти высоту треугольника со сторонами 57, 54 и 23
Найти высоту треугольника со сторонами 77, 44 и 43