Рассчитать высоту треугольника со сторонами 56, 38 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{56 + 38 + 20}{2}} \normalsize = 57}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{57(57-56)(57-38)(57-20)}}{38}\normalsize = 10.5356538}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{57(57-56)(57-38)(57-20)}}{56}\normalsize = 7.14919362}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{57(57-56)(57-38)(57-20)}}{20}\normalsize = 20.0177421}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 56, 38 и 20 равна 10.5356538
Высота треугольника опущенная с вершины A на сторону BC со сторонами 56, 38 и 20 равна 7.14919362
Высота треугольника опущенная с вершины C на сторону AB со сторонами 56, 38 и 20 равна 20.0177421
Ссылка на результат
?n1=56&n2=38&n3=20
Найти высоту треугольника со сторонами 141, 109 и 38
Найти высоту треугольника со сторонами 43, 38 и 35
Найти высоту треугольника со сторонами 38, 36 и 27
Найти высоту треугольника со сторонами 145, 98 и 64
Найти высоту треугольника со сторонами 135, 83 и 63
Найти высоту треугольника со сторонами 123, 94 и 71
Найти высоту треугольника со сторонами 43, 38 и 35
Найти высоту треугольника со сторонами 38, 36 и 27
Найти высоту треугольника со сторонами 145, 98 и 64
Найти высоту треугольника со сторонами 135, 83 и 63
Найти высоту треугольника со сторонами 123, 94 и 71