Рассчитать высоту треугольника со сторонами 56, 48 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{56 + 48 + 13}{2}} \normalsize = 58.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58.5(58.5-56)(58.5-48)(58.5-13)}}{48}\normalsize = 11.0137964}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58.5(58.5-56)(58.5-48)(58.5-13)}}{56}\normalsize = 9.44039691}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58.5(58.5-56)(58.5-48)(58.5-13)}}{13}\normalsize = 40.6663251}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 56, 48 и 13 равна 11.0137964
Высота треугольника опущенная с вершины A на сторону BC со сторонами 56, 48 и 13 равна 9.44039691
Высота треугольника опущенная с вершины C на сторону AB со сторонами 56, 48 и 13 равна 40.6663251
Ссылка на результат
?n1=56&n2=48&n3=13
Найти высоту треугольника со сторонами 97, 94 и 9
Найти высоту треугольника со сторонами 134, 125 и 78
Найти высоту треугольника со сторонами 90, 75 и 35
Найти высоту треугольника со сторонами 150, 111 и 58
Найти высоту треугольника со сторонами 141, 126 и 80
Найти высоту треугольника со сторонами 145, 98 и 88
Найти высоту треугольника со сторонами 134, 125 и 78
Найти высоту треугольника со сторонами 90, 75 и 35
Найти высоту треугольника со сторонами 150, 111 и 58
Найти высоту треугольника со сторонами 141, 126 и 80
Найти высоту треугольника со сторонами 145, 98 и 88