Рассчитать высоту треугольника со сторонами 56, 49 и 47

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{56 + 49 + 47}{2}} \normalsize = 76}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76(76-56)(76-49)(76-47)}}{49}\normalsize = 44.5283488}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76(76-56)(76-49)(76-47)}}{56}\normalsize = 38.9623052}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76(76-56)(76-49)(76-47)}}{47}\normalsize = 46.4231721}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 56, 49 и 47 равна 44.5283488
Высота треугольника опущенная с вершины A на сторону BC со сторонами 56, 49 и 47 равна 38.9623052
Высота треугольника опущенная с вершины C на сторону AB со сторонами 56, 49 и 47 равна 46.4231721
Ссылка на результат
?n1=56&n2=49&n3=47