Рассчитать высоту треугольника со сторонами 56, 52 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{56 + 52 + 40}{2}} \normalsize = 74}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{74(74-56)(74-52)(74-40)}}{52}\normalsize = 38.3910123}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{74(74-56)(74-52)(74-40)}}{56}\normalsize = 35.6487971}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{74(74-56)(74-52)(74-40)}}{40}\normalsize = 49.9083159}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 56, 52 и 40 равна 38.3910123
Высота треугольника опущенная с вершины A на сторону BC со сторонами 56, 52 и 40 равна 35.6487971
Высота треугольника опущенная с вершины C на сторону AB со сторонами 56, 52 и 40 равна 49.9083159
Ссылка на результат
?n1=56&n2=52&n3=40
Найти высоту треугольника со сторонами 122, 122 и 104
Найти высоту треугольника со сторонами 110, 102 и 84
Найти высоту треугольника со сторонами 136, 111 и 51
Найти высоту треугольника со сторонами 136, 98 и 58
Найти высоту треугольника со сторонами 134, 118 и 116
Найти высоту треугольника со сторонами 143, 126 и 91
Найти высоту треугольника со сторонами 110, 102 и 84
Найти высоту треугольника со сторонами 136, 111 и 51
Найти высоту треугольника со сторонами 136, 98 и 58
Найти высоту треугольника со сторонами 134, 118 и 116
Найти высоту треугольника со сторонами 143, 126 и 91