Рассчитать высоту треугольника со сторонами 56, 53 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{56 + 53 + 30}{2}} \normalsize = 69.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69.5(69.5-56)(69.5-53)(69.5-30)}}{53}\normalsize = 29.508962}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69.5(69.5-56)(69.5-53)(69.5-30)}}{56}\normalsize = 27.9281247}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69.5(69.5-56)(69.5-53)(69.5-30)}}{30}\normalsize = 52.1324995}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 56, 53 и 30 равна 29.508962
Высота треугольника опущенная с вершины A на сторону BC со сторонами 56, 53 и 30 равна 27.9281247
Высота треугольника опущенная с вершины C на сторону AB со сторонами 56, 53 и 30 равна 52.1324995
Ссылка на результат
?n1=56&n2=53&n3=30
Найти высоту треугольника со сторонами 140, 101 и 47
Найти высоту треугольника со сторонами 122, 111 и 74
Найти высоту треугольника со сторонами 41, 37 и 28
Найти высоту треугольника со сторонами 139, 123 и 117
Найти высоту треугольника со сторонами 100, 98 и 6
Найти высоту треугольника со сторонами 62, 60 и 54
Найти высоту треугольника со сторонами 122, 111 и 74
Найти высоту треугольника со сторонами 41, 37 и 28
Найти высоту треугольника со сторонами 139, 123 и 117
Найти высоту треугольника со сторонами 100, 98 и 6
Найти высоту треугольника со сторонами 62, 60 и 54