Рассчитать высоту треугольника со сторонами 56, 55 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{56 + 55 + 17}{2}} \normalsize = 64}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64(64-56)(64-55)(64-17)}}{55}\normalsize = 16.9228097}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64(64-56)(64-55)(64-17)}}{56}\normalsize = 16.6206167}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64(64-56)(64-55)(64-17)}}{17}\normalsize = 54.7502666}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 56, 55 и 17 равна 16.9228097
Высота треугольника опущенная с вершины A на сторону BC со сторонами 56, 55 и 17 равна 16.6206167
Высота треугольника опущенная с вершины C на сторону AB со сторонами 56, 55 и 17 равна 54.7502666
Ссылка на результат
?n1=56&n2=55&n3=17
Найти высоту треугольника со сторонами 148, 138 и 36
Найти высоту треугольника со сторонами 98, 68 и 57
Найти высоту треугольника со сторонами 79, 62 и 56
Найти высоту треугольника со сторонами 114, 114 и 26
Найти высоту треугольника со сторонами 150, 114 и 98
Найти высоту треугольника со сторонами 144, 119 и 51
Найти высоту треугольника со сторонами 98, 68 и 57
Найти высоту треугольника со сторонами 79, 62 и 56
Найти высоту треугольника со сторонами 114, 114 и 26
Найти высоту треугольника со сторонами 150, 114 и 98
Найти высоту треугольника со сторонами 144, 119 и 51