Рассчитать высоту треугольника со сторонами 56, 55 и 4

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{56 + 55 + 4}{2}} \normalsize = 57.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{57.5(57.5-56)(57.5-55)(57.5-4)}}{55}\normalsize = 3.90565388}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{57.5(57.5-56)(57.5-55)(57.5-4)}}{56}\normalsize = 3.83591006}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{57.5(57.5-56)(57.5-55)(57.5-4)}}{4}\normalsize = 53.7027409}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 56, 55 и 4 равна 3.90565388
Высота треугольника опущенная с вершины A на сторону BC со сторонами 56, 55 и 4 равна 3.83591006
Высота треугольника опущенная с вершины C на сторону AB со сторонами 56, 55 и 4 равна 53.7027409
Ссылка на результат
?n1=56&n2=55&n3=4