Рассчитать высоту треугольника со сторонами 57, 38 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 38 + 32}{2}} \normalsize = 63.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63.5(63.5-57)(63.5-38)(63.5-32)}}{38}\normalsize = 30.3050711}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63.5(63.5-57)(63.5-38)(63.5-32)}}{57}\normalsize = 20.2033807}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63.5(63.5-57)(63.5-38)(63.5-32)}}{32}\normalsize = 35.9872719}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 38 и 32 равна 30.3050711
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 38 и 32 равна 20.2033807
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 38 и 32 равна 35.9872719
Ссылка на результат
?n1=57&n2=38&n3=32
Найти высоту треугольника со сторонами 64, 59 и 38
Найти высоту треугольника со сторонами 78, 67 и 37
Найти высоту треугольника со сторонами 114, 97 и 20
Найти высоту треугольника со сторонами 50, 47 и 45
Найти высоту треугольника со сторонами 61, 51 и 41
Найти высоту треугольника со сторонами 86, 70 и 68
Найти высоту треугольника со сторонами 78, 67 и 37
Найти высоту треугольника со сторонами 114, 97 и 20
Найти высоту треугольника со сторонами 50, 47 и 45
Найти высоту треугольника со сторонами 61, 51 и 41
Найти высоту треугольника со сторонами 86, 70 и 68