Рассчитать высоту треугольника со сторонами 57, 39 и 20

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 39 + 20}{2}} \normalsize = 58}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58(58-57)(58-39)(58-20)}}{39}\normalsize = 10.4941673}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58(58-57)(58-39)(58-20)}}{57}\normalsize = 7.18021974}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58(58-57)(58-39)(58-20)}}{20}\normalsize = 20.4636263}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 39 и 20 равна 10.4941673
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 39 и 20 равна 7.18021974
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 39 и 20 равна 20.4636263
Ссылка на результат
?n1=57&n2=39&n3=20