Рассчитать высоту треугольника со сторонами 57, 46 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 46 + 27}{2}} \normalsize = 65}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{65(65-57)(65-46)(65-27)}}{46}\normalsize = 26.6405039}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{65(65-57)(65-46)(65-27)}}{57}\normalsize = 21.499354}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{65(65-57)(65-46)(65-27)}}{27}\normalsize = 45.3875251}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 46 и 27 равна 26.6405039
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 46 и 27 равна 21.499354
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 46 и 27 равна 45.3875251
Ссылка на результат
?n1=57&n2=46&n3=27
Найти высоту треугольника со сторонами 145, 130 и 96
Найти высоту треугольника со сторонами 104, 97 и 70
Найти высоту треугольника со сторонами 144, 140 и 71
Найти высоту треугольника со сторонами 121, 85 и 60
Найти высоту треугольника со сторонами 112, 87 и 84
Найти высоту треугольника со сторонами 105, 67 и 64
Найти высоту треугольника со сторонами 104, 97 и 70
Найти высоту треугольника со сторонами 144, 140 и 71
Найти высоту треугольника со сторонами 121, 85 и 60
Найти высоту треугольника со сторонами 112, 87 и 84
Найти высоту треугольника со сторонами 105, 67 и 64