Рассчитать высоту треугольника со сторонами 57, 47 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 47 + 18}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-57)(61-47)(61-18)}}{47}\normalsize = 16.3089235}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-57)(61-47)(61-18)}}{57}\normalsize = 13.4477089}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-57)(61-47)(61-18)}}{18}\normalsize = 42.5844115}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 47 и 18 равна 16.3089235
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 47 и 18 равна 13.4477089
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 47 и 18 равна 42.5844115
Ссылка на результат
?n1=57&n2=47&n3=18
Найти высоту треугольника со сторонами 146, 134 и 110
Найти высоту треугольника со сторонами 131, 108 и 87
Найти высоту треугольника со сторонами 142, 79 и 77
Найти высоту треугольника со сторонами 122, 92 и 57
Найти высоту треугольника со сторонами 67, 55 и 26
Найти высоту треугольника со сторонами 79, 50 и 32
Найти высоту треугольника со сторонами 131, 108 и 87
Найти высоту треугольника со сторонами 142, 79 и 77
Найти высоту треугольника со сторонами 122, 92 и 57
Найти высоту треугольника со сторонами 67, 55 и 26
Найти высоту треугольника со сторонами 79, 50 и 32