Рассчитать высоту треугольника со сторонами 57, 49 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 49 + 41}{2}} \normalsize = 73.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{73.5(73.5-57)(73.5-49)(73.5-41)}}{49}\normalsize = 40.1092259}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{73.5(73.5-57)(73.5-49)(73.5-41)}}{57}\normalsize = 34.4798608}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{73.5(73.5-57)(73.5-49)(73.5-41)}}{41}\normalsize = 47.9354163}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 49 и 41 равна 40.1092259
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 49 и 41 равна 34.4798608
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 49 и 41 равна 47.9354163
Ссылка на результат
?n1=57&n2=49&n3=41
Найти высоту треугольника со сторонами 115, 95 и 52
Найти высоту треугольника со сторонами 147, 145 и 116
Найти высоту треугольника со сторонами 144, 108 и 95
Найти высоту треугольника со сторонами 114, 105 и 27
Найти высоту треугольника со сторонами 129, 73 и 58
Найти высоту треугольника со сторонами 101, 77 и 69
Найти высоту треугольника со сторонами 147, 145 и 116
Найти высоту треугольника со сторонами 144, 108 и 95
Найти высоту треугольника со сторонами 114, 105 и 27
Найти высоту треугольника со сторонами 129, 73 и 58
Найти высоту треугольника со сторонами 101, 77 и 69