Рассчитать высоту треугольника со сторонами 57, 49 и 9
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 49 + 9}{2}} \normalsize = 57.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{57.5(57.5-57)(57.5-49)(57.5-9)}}{49}\normalsize = 4.44358173}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{57.5(57.5-57)(57.5-49)(57.5-9)}}{57}\normalsize = 3.81992113}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{57.5(57.5-57)(57.5-49)(57.5-9)}}{9}\normalsize = 24.1928339}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 49 и 9 равна 4.44358173
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 49 и 9 равна 3.81992113
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 49 и 9 равна 24.1928339
Ссылка на результат
?n1=57&n2=49&n3=9
Найти высоту треугольника со сторонами 141, 127 и 73
Найти высоту треугольника со сторонами 94, 91 и 61
Найти высоту треугольника со сторонами 109, 102 и 97
Найти высоту треугольника со сторонами 116, 103 и 78
Найти высоту треугольника со сторонами 137, 83 и 57
Найти высоту треугольника со сторонами 40, 36 и 8
Найти высоту треугольника со сторонами 94, 91 и 61
Найти высоту треугольника со сторонами 109, 102 и 97
Найти высоту треугольника со сторонами 116, 103 и 78
Найти высоту треугольника со сторонами 137, 83 и 57
Найти высоту треугольника со сторонами 40, 36 и 8