Рассчитать высоту треугольника со сторонами 57, 50 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 50 + 36}{2}} \normalsize = 71.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71.5(71.5-57)(71.5-50)(71.5-36)}}{50}\normalsize = 35.5820053}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71.5(71.5-57)(71.5-50)(71.5-36)}}{57}\normalsize = 31.2122853}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71.5(71.5-57)(71.5-50)(71.5-36)}}{36}\normalsize = 49.4194518}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 50 и 36 равна 35.5820053
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 50 и 36 равна 31.2122853
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 50 и 36 равна 49.4194518
Ссылка на результат
?n1=57&n2=50&n3=36
Найти высоту треугольника со сторонами 94, 89 и 50
Найти высоту треугольника со сторонами 110, 105 и 28
Найти высоту треугольника со сторонами 140, 133 и 76
Найти высоту треугольника со сторонами 126, 80 и 53
Найти высоту треугольника со сторонами 50, 48 и 43
Найти высоту треугольника со сторонами 95, 73 и 26
Найти высоту треугольника со сторонами 110, 105 и 28
Найти высоту треугольника со сторонами 140, 133 и 76
Найти высоту треугольника со сторонами 126, 80 и 53
Найти высоту треугольника со сторонами 50, 48 и 43
Найти высоту треугольника со сторонами 95, 73 и 26