Рассчитать высоту треугольника со сторонами 57, 52 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 52 + 25}{2}} \normalsize = 67}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67(67-57)(67-52)(67-25)}}{52}\normalsize = 24.9881629}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67(67-57)(67-52)(67-25)}}{57}\normalsize = 22.7962188}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67(67-57)(67-52)(67-25)}}{25}\normalsize = 51.9753788}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 52 и 25 равна 24.9881629
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 52 и 25 равна 22.7962188
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 52 и 25 равна 51.9753788
Ссылка на результат
?n1=57&n2=52&n3=25
Найти высоту треугольника со сторонами 112, 109 и 36
Найти высоту треугольника со сторонами 126, 109 и 28
Найти высоту треугольника со сторонами 142, 123 и 42
Найти высоту треугольника со сторонами 115, 94 и 25
Найти высоту треугольника со сторонами 89, 70 и 69
Найти высоту треугольника со сторонами 130, 119 и 51
Найти высоту треугольника со сторонами 126, 109 и 28
Найти высоту треугольника со сторонами 142, 123 и 42
Найти высоту треугольника со сторонами 115, 94 и 25
Найти высоту треугольника со сторонами 89, 70 и 69
Найти высоту треугольника со сторонами 130, 119 и 51