Рассчитать высоту треугольника со сторонами 57, 55 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{57 + 55 + 48}{2}} \normalsize = 80}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{80(80-57)(80-55)(80-48)}}{55}\normalsize = 44.118548}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{80(80-57)(80-55)(80-48)}}{57}\normalsize = 42.5705288}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{80(80-57)(80-55)(80-48)}}{48}\normalsize = 50.552503}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 57, 55 и 48 равна 44.118548
Высота треугольника опущенная с вершины A на сторону BC со сторонами 57, 55 и 48 равна 42.5705288
Высота треугольника опущенная с вершины C на сторону AB со сторонами 57, 55 и 48 равна 50.552503
Ссылка на результат
?n1=57&n2=55&n3=48
Найти высоту треугольника со сторонами 78, 52 и 29
Найти высоту треугольника со сторонами 108, 93 и 30
Найти высоту треугольника со сторонами 67, 65 и 38
Найти высоту треугольника со сторонами 72, 70 и 62
Найти высоту треугольника со сторонами 131, 107 и 60
Найти высоту треугольника со сторонами 150, 148 и 30
Найти высоту треугольника со сторонами 108, 93 и 30
Найти высоту треугольника со сторонами 67, 65 и 38
Найти высоту треугольника со сторонами 72, 70 и 62
Найти высоту треугольника со сторонами 131, 107 и 60
Найти высоту треугольника со сторонами 150, 148 и 30