Рассчитать высоту треугольника со сторонами 58, 46 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{58 + 46 + 23}{2}} \normalsize = 63.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63.5(63.5-58)(63.5-46)(63.5-23)}}{46}\normalsize = 21.6315135}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63.5(63.5-58)(63.5-46)(63.5-23)}}{58}\normalsize = 17.156028}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63.5(63.5-58)(63.5-46)(63.5-23)}}{23}\normalsize = 43.263027}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 58, 46 и 23 равна 21.6315135
Высота треугольника опущенная с вершины A на сторону BC со сторонами 58, 46 и 23 равна 17.156028
Высота треугольника опущенная с вершины C на сторону AB со сторонами 58, 46 и 23 равна 43.263027
Ссылка на результат
?n1=58&n2=46&n3=23
Найти высоту треугольника со сторонами 137, 136 и 63
Найти высоту треугольника со сторонами 133, 94 и 65
Найти высоту треугольника со сторонами 44, 38 и 35
Найти высоту треугольника со сторонами 143, 132 и 70
Найти высоту треугольника со сторонами 108, 89 и 32
Найти высоту треугольника со сторонами 116, 98 и 52
Найти высоту треугольника со сторонами 133, 94 и 65
Найти высоту треугольника со сторонами 44, 38 и 35
Найти высоту треугольника со сторонами 143, 132 и 70
Найти высоту треугольника со сторонами 108, 89 и 32
Найти высоту треугольника со сторонами 116, 98 и 52