Рассчитать высоту треугольника со сторонами 58, 52 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{58 + 52 + 30}{2}} \normalsize = 70}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70(70-58)(70-52)(70-30)}}{52}\normalsize = 29.9111109}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70(70-58)(70-52)(70-30)}}{58}\normalsize = 26.8168581}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70(70-58)(70-52)(70-30)}}{30}\normalsize = 51.8459256}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 58, 52 и 30 равна 29.9111109
Высота треугольника опущенная с вершины A на сторону BC со сторонами 58, 52 и 30 равна 26.8168581
Высота треугольника опущенная с вершины C на сторону AB со сторонами 58, 52 и 30 равна 51.8459256
Ссылка на результат
?n1=58&n2=52&n3=30
Найти высоту треугольника со сторонами 146, 123 и 49
Найти высоту треугольника со сторонами 122, 101 и 37
Найти высоту треугольника со сторонами 148, 103 и 65
Найти высоту треугольника со сторонами 98, 97 и 66
Найти высоту треугольника со сторонами 147, 126 и 56
Найти высоту треугольника со сторонами 150, 134 и 93
Найти высоту треугольника со сторонами 122, 101 и 37
Найти высоту треугольника со сторонами 148, 103 и 65
Найти высоту треугольника со сторонами 98, 97 и 66
Найти высоту треугольника со сторонами 147, 126 и 56
Найти высоту треугольника со сторонами 150, 134 и 93