Рассчитать высоту треугольника со сторонами 58, 56 и 49

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{58 + 56 + 49}{2}} \normalsize = 81.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81.5(81.5-58)(81.5-56)(81.5-49)}}{56}\normalsize = 44.9952299}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81.5(81.5-58)(81.5-56)(81.5-49)}}{58}\normalsize = 43.4436702}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81.5(81.5-58)(81.5-56)(81.5-49)}}{49}\normalsize = 51.4231199}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 58, 56 и 49 равна 44.9952299
Высота треугольника опущенная с вершины A на сторону BC со сторонами 58, 56 и 49 равна 43.4436702
Высота треугольника опущенная с вершины C на сторону AB со сторонами 58, 56 и 49 равна 51.4231199
Ссылка на результат
?n1=58&n2=56&n3=49