Рассчитать высоту треугольника со сторонами 59, 34 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 34 + 34}{2}} \normalsize = 63.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63.5(63.5-59)(63.5-34)(63.5-34)}}{34}\normalsize = 29.3336573}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63.5(63.5-59)(63.5-34)(63.5-34)}}{59}\normalsize = 16.9041415}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63.5(63.5-59)(63.5-34)(63.5-34)}}{34}\normalsize = 29.3336573}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 34 и 34 равна 29.3336573
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 34 и 34 равна 16.9041415
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 34 и 34 равна 29.3336573
Ссылка на результат
?n1=59&n2=34&n3=34
Найти высоту треугольника со сторонами 61, 48 и 47
Найти высоту треугольника со сторонами 96, 85 и 64
Найти высоту треугольника со сторонами 141, 139 и 96
Найти высоту треугольника со сторонами 121, 67 и 56
Найти высоту треугольника со сторонами 118, 115 и 23
Найти высоту треугольника со сторонами 77, 76 и 7
Найти высоту треугольника со сторонами 96, 85 и 64
Найти высоту треугольника со сторонами 141, 139 и 96
Найти высоту треугольника со сторонами 121, 67 и 56
Найти высоту треугольника со сторонами 118, 115 и 23
Найти высоту треугольника со сторонами 77, 76 и 7