Рассчитать высоту треугольника со сторонами 59, 35 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 35 + 34}{2}} \normalsize = 64}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64(64-59)(64-35)(64-34)}}{35}\normalsize = 30.1506422}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64(64-59)(64-35)(64-34)}}{59}\normalsize = 17.8859742}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64(64-59)(64-35)(64-34)}}{34}\normalsize = 31.0374258}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 35 и 34 равна 30.1506422
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 35 и 34 равна 17.8859742
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 35 и 34 равна 31.0374258
Ссылка на результат
?n1=59&n2=35&n3=34
Найти высоту треугольника со сторонами 134, 100 и 36
Найти высоту треугольника со сторонами 89, 81 и 41
Найти высоту треугольника со сторонами 126, 126 и 37
Найти высоту треугольника со сторонами 108, 100 и 83
Найти высоту треугольника со сторонами 135, 131 и 119
Найти высоту треугольника со сторонами 127, 123 и 77
Найти высоту треугольника со сторонами 89, 81 и 41
Найти высоту треугольника со сторонами 126, 126 и 37
Найти высоту треугольника со сторонами 108, 100 и 83
Найти высоту треугольника со сторонами 135, 131 и 119
Найти высоту треугольника со сторонами 127, 123 и 77