Рассчитать высоту треугольника со сторонами 59, 41 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 41 + 34}{2}} \normalsize = 67}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{67(67-59)(67-41)(67-34)}}{41}\normalsize = 33.0805086}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{67(67-59)(67-41)(67-34)}}{59}\normalsize = 22.98815}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{67(67-59)(67-41)(67-34)}}{34}\normalsize = 39.8912015}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 41 и 34 равна 33.0805086
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 41 и 34 равна 22.98815
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 41 и 34 равна 39.8912015
Ссылка на результат
?n1=59&n2=41&n3=34
Найти высоту треугольника со сторонами 107, 80 и 35
Найти высоту треугольника со сторонами 144, 99 и 97
Найти высоту треугольника со сторонами 146, 140 и 102
Найти высоту треугольника со сторонами 132, 116 и 57
Найти высоту треугольника со сторонами 150, 138 и 65
Найти высоту треугольника со сторонами 133, 128 и 58
Найти высоту треугольника со сторонами 144, 99 и 97
Найти высоту треугольника со сторонами 146, 140 и 102
Найти высоту треугольника со сторонами 132, 116 и 57
Найти высоту треугольника со сторонами 150, 138 и 65
Найти высоту треугольника со сторонами 133, 128 и 58