Рассчитать высоту треугольника со сторонами 59, 45 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 45 + 34}{2}} \normalsize = 69}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69(69-59)(69-45)(69-34)}}{45}\normalsize = 33.8362068}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69(69-59)(69-45)(69-34)}}{59}\normalsize = 25.8072764}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69(69-59)(69-45)(69-34)}}{34}\normalsize = 44.7832148}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 45 и 34 равна 33.8362068
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 45 и 34 равна 25.8072764
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 45 и 34 равна 44.7832148
Ссылка на результат
?n1=59&n2=45&n3=34
Найти высоту треугольника со сторонами 73, 43 и 35
Найти высоту треугольника со сторонами 102, 100 и 39
Найти высоту треугольника со сторонами 146, 113 и 64
Найти высоту треугольника со сторонами 138, 136 и 74
Найти высоту треугольника со сторонами 59, 44 и 26
Найти высоту треугольника со сторонами 127, 118 и 67
Найти высоту треугольника со сторонами 102, 100 и 39
Найти высоту треугольника со сторонами 146, 113 и 64
Найти высоту треугольника со сторонами 138, 136 и 74
Найти высоту треугольника со сторонами 59, 44 и 26
Найти высоту треугольника со сторонами 127, 118 и 67