Рассчитать высоту треугольника со сторонами 59, 50 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 50 + 30}{2}} \normalsize = 69.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69.5(69.5-59)(69.5-50)(69.5-30)}}{50}\normalsize = 29.989063}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69.5(69.5-59)(69.5-50)(69.5-30)}}{59}\normalsize = 25.4144602}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69.5(69.5-59)(69.5-50)(69.5-30)}}{30}\normalsize = 49.9817717}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 50 и 30 равна 29.989063
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 50 и 30 равна 25.4144602
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 50 и 30 равна 49.9817717
Ссылка на результат
?n1=59&n2=50&n3=30
Найти высоту треугольника со сторонами 99, 62 и 38
Найти высоту треугольника со сторонами 118, 84 и 73
Найти высоту треугольника со сторонами 135, 132 и 131
Найти высоту треугольника со сторонами 125, 84 и 79
Найти высоту треугольника со сторонами 144, 103 и 100
Найти высоту треугольника со сторонами 129, 82 и 75
Найти высоту треугольника со сторонами 118, 84 и 73
Найти высоту треугольника со сторонами 135, 132 и 131
Найти высоту треугольника со сторонами 125, 84 и 79
Найти высоту треугольника со сторонами 144, 103 и 100
Найти высоту треугольника со сторонами 129, 82 и 75