Рассчитать высоту треугольника со сторонами 59, 50 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 50 + 47}{2}} \normalsize = 78}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{78(78-59)(78-50)(78-47)}}{50}\normalsize = 45.3674068}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{78(78-59)(78-50)(78-47)}}{59}\normalsize = 38.4469549}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{78(78-59)(78-50)(78-47)}}{47}\normalsize = 48.2631987}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 50 и 47 равна 45.3674068
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 50 и 47 равна 38.4469549
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 50 и 47 равна 48.2631987
Ссылка на результат
?n1=59&n2=50&n3=47
Найти высоту треугольника со сторонами 140, 132 и 20
Найти высоту треугольника со сторонами 129, 121 и 71
Найти высоту треугольника со сторонами 140, 132 и 123
Найти высоту треугольника со сторонами 77, 61 и 52
Найти высоту треугольника со сторонами 139, 138 и 39
Найти высоту треугольника со сторонами 64, 56 и 53
Найти высоту треугольника со сторонами 129, 121 и 71
Найти высоту треугольника со сторонами 140, 132 и 123
Найти высоту треугольника со сторонами 77, 61 и 52
Найти высоту треугольника со сторонами 139, 138 и 39
Найти высоту треугольника со сторонами 64, 56 и 53