Рассчитать высоту треугольника со сторонами 59, 51 и 18

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 51 + 18}{2}} \normalsize = 64}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64(64-59)(64-51)(64-18)}}{51}\normalsize = 17.1547898}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64(64-59)(64-51)(64-18)}}{59}\normalsize = 14.8287166}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64(64-59)(64-51)(64-18)}}{18}\normalsize = 48.6052377}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 51 и 18 равна 17.1547898
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 51 и 18 равна 14.8287166
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 51 и 18 равна 48.6052377
Ссылка на результат
?n1=59&n2=51&n3=18