Рассчитать высоту треугольника со сторонами 59, 55 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 55 + 41}{2}} \normalsize = 77.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{77.5(77.5-59)(77.5-55)(77.5-41)}}{55}\normalsize = 39.4586037}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{77.5(77.5-59)(77.5-55)(77.5-41)}}{59}\normalsize = 36.7834441}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{77.5(77.5-59)(77.5-55)(77.5-41)}}{41}\normalsize = 52.9322732}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 55 и 41 равна 39.4586037
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 55 и 41 равна 36.7834441
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 55 и 41 равна 52.9322732
Ссылка на результат
?n1=59&n2=55&n3=41
Найти высоту треугольника со сторонами 145, 109 и 60
Найти высоту треугольника со сторонами 24, 15 и 13
Найти высоту треугольника со сторонами 143, 140 и 42
Найти высоту треугольника со сторонами 139, 113 и 60
Найти высоту треугольника со сторонами 134, 109 и 30
Найти высоту треугольника со сторонами 109, 74 и 74
Найти высоту треугольника со сторонами 24, 15 и 13
Найти высоту треугольника со сторонами 143, 140 и 42
Найти высоту треугольника со сторонами 139, 113 и 60
Найти высоту треугольника со сторонами 134, 109 и 30
Найти высоту треугольника со сторонами 109, 74 и 74