Рассчитать высоту треугольника со сторонами 59, 55 и 52
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 55 + 52}{2}} \normalsize = 83}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83(83-59)(83-55)(83-52)}}{55}\normalsize = 47.8158451}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83(83-59)(83-55)(83-52)}}{59}\normalsize = 44.5740929}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83(83-59)(83-55)(83-52)}}{52}\normalsize = 50.5744515}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 55 и 52 равна 47.8158451
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 55 и 52 равна 44.5740929
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 55 и 52 равна 50.5744515
Ссылка на результат
?n1=59&n2=55&n3=52
Найти высоту треугольника со сторонами 101, 86 и 46
Найти высоту треугольника со сторонами 117, 115 и 43
Найти высоту треугольника со сторонами 85, 74 и 28
Найти высоту треугольника со сторонами 107, 78 и 58
Найти высоту треугольника со сторонами 116, 110 и 44
Найти высоту треугольника со сторонами 131, 125 и 32
Найти высоту треугольника со сторонами 117, 115 и 43
Найти высоту треугольника со сторонами 85, 74 и 28
Найти высоту треугольника со сторонами 107, 78 и 58
Найти высоту треугольника со сторонами 116, 110 и 44
Найти высоту треугольника со сторонами 131, 125 и 32