Рассчитать высоту треугольника со сторонами 59, 56 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 56 + 11}{2}} \normalsize = 63}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63(63-59)(63-56)(63-11)}}{56}\normalsize = 10.8166538}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63(63-59)(63-56)(63-11)}}{59}\normalsize = 10.2666545}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63(63-59)(63-56)(63-11)}}{11}\normalsize = 55.0666013}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 56 и 11 равна 10.8166538
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 56 и 11 равна 10.2666545
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 56 и 11 равна 55.0666013
Ссылка на результат
?n1=59&n2=56&n3=11
Найти высоту треугольника со сторонами 111, 110 и 44
Найти высоту треугольника со сторонами 109, 96 и 15
Найти высоту треугольника со сторонами 118, 94 и 76
Найти высоту треугольника со сторонами 148, 111 и 110
Найти высоту треугольника со сторонами 101, 97 и 92
Найти высоту треугольника со сторонами 140, 109 и 59
Найти высоту треугольника со сторонами 109, 96 и 15
Найти высоту треугольника со сторонами 118, 94 и 76
Найти высоту треугольника со сторонами 148, 111 и 110
Найти высоту треугольника со сторонами 101, 97 и 92
Найти высоту треугольника со сторонами 140, 109 и 59