Рассчитать высоту треугольника со сторонами 59, 56 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 56 + 26}{2}} \normalsize = 70.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70.5(70.5-59)(70.5-56)(70.5-26)}}{56}\normalsize = 25.8314898}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70.5(70.5-59)(70.5-56)(70.5-26)}}{59}\normalsize = 24.5180242}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70.5(70.5-59)(70.5-56)(70.5-26)}}{26}\normalsize = 55.6370549}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 56 и 26 равна 25.8314898
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 56 и 26 равна 24.5180242
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 56 и 26 равна 55.6370549
Ссылка на результат
?n1=59&n2=56&n3=26
Найти высоту треугольника со сторонами 125, 80 и 65
Найти высоту треугольника со сторонами 57, 51 и 31
Найти высоту треугольника со сторонами 87, 50 и 50
Найти высоту треугольника со сторонами 116, 94 и 85
Найти высоту треугольника со сторонами 126, 103 и 86
Найти высоту треугольника со сторонами 112, 79 и 67
Найти высоту треугольника со сторонами 57, 51 и 31
Найти высоту треугольника со сторонами 87, 50 и 50
Найти высоту треугольника со сторонами 116, 94 и 85
Найти высоту треугольника со сторонами 126, 103 и 86
Найти высоту треугольника со сторонами 112, 79 и 67