Рассчитать высоту треугольника со сторонами 59, 56 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{59 + 56 + 27}{2}} \normalsize = 71}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{71(71-59)(71-56)(71-27)}}{56}\normalsize = 26.7814282}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{71(71-59)(71-56)(71-27)}}{59}\normalsize = 25.4196607}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{71(71-59)(71-56)(71-27)}}{27}\normalsize = 55.546666}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 59, 56 и 27 равна 26.7814282
Высота треугольника опущенная с вершины A на сторону BC со сторонами 59, 56 и 27 равна 25.4196607
Высота треугольника опущенная с вершины C на сторону AB со сторонами 59, 56 и 27 равна 55.546666
Ссылка на результат
?n1=59&n2=56&n3=27
Найти высоту треугольника со сторонами 150, 115 и 58
Найти высоту треугольника со сторонами 136, 108 и 34
Найти высоту треугольника со сторонами 117, 110 и 107
Найти высоту треугольника со сторонами 148, 111 и 52
Найти высоту треугольника со сторонами 144, 103 и 43
Найти высоту треугольника со сторонами 113, 110 и 15
Найти высоту треугольника со сторонами 136, 108 и 34
Найти высоту треугольника со сторонами 117, 110 и 107
Найти высоту треугольника со сторонами 148, 111 и 52
Найти высоту треугольника со сторонами 144, 103 и 43
Найти высоту треугольника со сторонами 113, 110 и 15