Рассчитать высоту треугольника со сторонами 60, 36 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 36 + 30}{2}} \normalsize = 63}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{63(63-60)(63-36)(63-30)}}{36}\normalsize = 22.7980262}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{63(63-60)(63-36)(63-30)}}{60}\normalsize = 13.6788157}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{63(63-60)(63-36)(63-30)}}{30}\normalsize = 27.3576315}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 36 и 30 равна 22.7980262
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 36 и 30 равна 13.6788157
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 36 и 30 равна 27.3576315
Ссылка на результат
?n1=60&n2=36&n3=30
Найти высоту треугольника со сторонами 135, 135 и 79
Найти высоту треугольника со сторонами 61, 47 и 28
Найти высоту треугольника со сторонами 146, 116 и 106
Найти высоту треугольника со сторонами 86, 58 и 31
Найти высоту треугольника со сторонами 133, 88 и 51
Найти высоту треугольника со сторонами 60, 56 и 45
Найти высоту треугольника со сторонами 61, 47 и 28
Найти высоту треугольника со сторонами 146, 116 и 106
Найти высоту треугольника со сторонами 86, 58 и 31
Найти высоту треугольника со сторонами 133, 88 и 51
Найти высоту треугольника со сторонами 60, 56 и 45