Рассчитать высоту треугольника со сторонами 60, 51 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 51 + 41}{2}} \normalsize = 76}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{76(76-60)(76-51)(76-41)}}{51}\normalsize = 40.4511277}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{76(76-60)(76-51)(76-41)}}{60}\normalsize = 34.3834586}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{76(76-60)(76-51)(76-41)}}{41}\normalsize = 50.3172564}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 51 и 41 равна 40.4511277
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 51 и 41 равна 34.3834586
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 51 и 41 равна 50.3172564
Ссылка на результат
?n1=60&n2=51&n3=41
Найти высоту треугольника со сторонами 57, 53 и 21
Найти высоту треугольника со сторонами 132, 116 и 86
Найти высоту треугольника со сторонами 81, 70 и 14
Найти высоту треугольника со сторонами 139, 119 и 30
Найти высоту треугольника со сторонами 140, 112 и 83
Найти высоту треугольника со сторонами 139, 115 и 57
Найти высоту треугольника со сторонами 132, 116 и 86
Найти высоту треугольника со сторонами 81, 70 и 14
Найти высоту треугольника со сторонами 139, 119 и 30
Найти высоту треугольника со сторонами 140, 112 и 83
Найти высоту треугольника со сторонами 139, 115 и 57