Рассчитать высоту треугольника со сторонами 60, 57 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 57 + 23}{2}} \normalsize = 70}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{70(70-60)(70-57)(70-23)}}{57}\normalsize = 22.9469392}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{70(70-60)(70-57)(70-23)}}{60}\normalsize = 21.7995922}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{70(70-60)(70-57)(70-23)}}{23}\normalsize = 56.8685015}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 57 и 23 равна 22.9469392
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 57 и 23 равна 21.7995922
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 57 и 23 равна 56.8685015
Ссылка на результат
?n1=60&n2=57&n3=23
Найти высоту треугольника со сторонами 119, 118 и 118
Найти высоту треугольника со сторонами 126, 106 и 74
Найти высоту треугольника со сторонами 31, 28 и 28
Найти высоту треугольника со сторонами 47, 46 и 7
Найти высоту треугольника со сторонами 145, 131 и 79
Найти высоту треугольника со сторонами 138, 125 и 18
Найти высоту треугольника со сторонами 126, 106 и 74
Найти высоту треугольника со сторонами 31, 28 и 28
Найти высоту треугольника со сторонами 47, 46 и 7
Найти высоту треугольника со сторонами 145, 131 и 79
Найти высоту треугольника со сторонами 138, 125 и 18