Рассчитать высоту треугольника со сторонами 60, 57 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 57 + 56}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-60)(86.5-57)(86.5-56)}}{57}\normalsize = 50.3903133}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-60)(86.5-57)(86.5-56)}}{60}\normalsize = 47.8707976}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-60)(86.5-57)(86.5-56)}}{56}\normalsize = 51.2901403}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 57 и 56 равна 50.3903133
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 57 и 56 равна 47.8707976
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 57 и 56 равна 51.2901403
Ссылка на результат
?n1=60&n2=57&n3=56
Найти высоту треугольника со сторонами 79, 56 и 38
Найти высоту треугольника со сторонами 140, 123 и 57
Найти высоту треугольника со сторонами 119, 101 и 85
Найти высоту треугольника со сторонами 128, 124 и 107
Найти высоту треугольника со сторонами 144, 119 и 50
Найти высоту треугольника со сторонами 83, 73 и 27
Найти высоту треугольника со сторонами 140, 123 и 57
Найти высоту треугольника со сторонами 119, 101 и 85
Найти высоту треугольника со сторонами 128, 124 и 107
Найти высоту треугольника со сторонами 144, 119 и 50
Найти высоту треугольника со сторонами 83, 73 и 27