Рассчитать высоту треугольника со сторонами 60, 58 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 58 + 53}{2}} \normalsize = 85.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85.5(85.5-60)(85.5-58)(85.5-53)}}{58}\normalsize = 48.1352439}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85.5(85.5-60)(85.5-58)(85.5-53)}}{60}\normalsize = 46.5307358}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85.5(85.5-60)(85.5-58)(85.5-53)}}{53}\normalsize = 52.6763047}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 58 и 53 равна 48.1352439
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 58 и 53 равна 46.5307358
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 58 и 53 равна 52.6763047
Ссылка на результат
?n1=60&n2=58&n3=53
Найти высоту треугольника со сторонами 133, 90 и 61
Найти высоту треугольника со сторонами 85, 67 и 25
Найти высоту треугольника со сторонами 146, 90 и 83
Найти высоту треугольника со сторонами 131, 131 и 34
Найти высоту треугольника со сторонами 125, 123 и 45
Найти высоту треугольника со сторонами 146, 130 и 32
Найти высоту треугольника со сторонами 85, 67 и 25
Найти высоту треугольника со сторонами 146, 90 и 83
Найти высоту треугольника со сторонами 131, 131 и 34
Найти высоту треугольника со сторонами 125, 123 и 45
Найти высоту треугольника со сторонами 146, 130 и 32