Рассчитать высоту треугольника со сторонами 60, 59 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{60 + 59 + 43}{2}} \normalsize = 81}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{81(81-60)(81-59)(81-43)}}{59}\normalsize = 40.423441}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{81(81-60)(81-59)(81-43)}}{60}\normalsize = 39.749717}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{81(81-60)(81-59)(81-43)}}{43}\normalsize = 55.4647214}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 60, 59 и 43 равна 40.423441
Высота треугольника опущенная с вершины A на сторону BC со сторонами 60, 59 и 43 равна 39.749717
Высота треугольника опущенная с вершины C на сторону AB со сторонами 60, 59 и 43 равна 55.4647214
Ссылка на результат
?n1=60&n2=59&n3=43
Найти высоту треугольника со сторонами 136, 129 и 79
Найти высоту треугольника со сторонами 99, 85 и 67
Найти высоту треугольника со сторонами 133, 127 и 49
Найти высоту треугольника со сторонами 116, 103 и 27
Найти высоту треугольника со сторонами 139, 112 и 86
Найти высоту треугольника со сторонами 46, 32 и 30
Найти высоту треугольника со сторонами 99, 85 и 67
Найти высоту треугольника со сторонами 133, 127 и 49
Найти высоту треугольника со сторонами 116, 103 и 27
Найти высоту треугольника со сторонами 139, 112 и 86
Найти высоту треугольника со сторонами 46, 32 и 30