Рассчитать высоту треугольника со сторонами 61, 32 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 32 + 30}{2}} \normalsize = 61.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61.5(61.5-61)(61.5-32)(61.5-30)}}{32}\normalsize = 10.5649845}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61.5(61.5-61)(61.5-32)(61.5-30)}}{61}\normalsize = 5.54228693}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61.5(61.5-61)(61.5-32)(61.5-30)}}{30}\normalsize = 11.2693167}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 32 и 30 равна 10.5649845
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 32 и 30 равна 5.54228693
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 32 и 30 равна 11.2693167
Ссылка на результат
?n1=61&n2=32&n3=30
Найти высоту треугольника со сторонами 57, 49 и 36
Найти высоту треугольника со сторонами 36, 20 и 19
Найти высоту треугольника со сторонами 149, 135 и 47
Найти высоту треугольника со сторонами 149, 123 и 34
Найти высоту треугольника со сторонами 136, 105 и 77
Найти высоту треугольника со сторонами 134, 114 и 102
Найти высоту треугольника со сторонами 36, 20 и 19
Найти высоту треугольника со сторонами 149, 135 и 47
Найти высоту треугольника со сторонами 149, 123 и 34
Найти высоту треугольника со сторонами 136, 105 и 77
Найти высоту треугольника со сторонами 134, 114 и 102