Рассчитать высоту треугольника со сторонами 61, 36 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 36 + 32}{2}} \normalsize = 64.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{64.5(64.5-61)(64.5-36)(64.5-32)}}{36}\normalsize = 25.4041978}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{64.5(64.5-61)(64.5-36)(64.5-32)}}{61}\normalsize = 14.9926413}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{64.5(64.5-61)(64.5-36)(64.5-32)}}{32}\normalsize = 28.5797225}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 36 и 32 равна 25.4041978
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 36 и 32 равна 14.9926413
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 36 и 32 равна 28.5797225
Ссылка на результат
?n1=61&n2=36&n3=32
Найти высоту треугольника со сторонами 114, 109 и 25
Найти высоту треугольника со сторонами 149, 126 и 94
Найти высоту треугольника со сторонами 120, 112 и 33
Найти высоту треугольника со сторонами 116, 106 и 95
Найти высоту треугольника со сторонами 70, 46 и 31
Найти высоту треугольника со сторонами 82, 78 и 43
Найти высоту треугольника со сторонами 149, 126 и 94
Найти высоту треугольника со сторонами 120, 112 и 33
Найти высоту треугольника со сторонами 116, 106 и 95
Найти высоту треугольника со сторонами 70, 46 и 31
Найти высоту треугольника со сторонами 82, 78 и 43