Рассчитать высоту треугольника со сторонами 61, 45 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 45 + 30}{2}} \normalsize = 68}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{68(68-61)(68-45)(68-30)}}{45}\normalsize = 28.6666322}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{68(68-61)(68-45)(68-30)}}{61}\normalsize = 21.1475156}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{68(68-61)(68-45)(68-30)}}{30}\normalsize = 42.9999483}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 45 и 30 равна 28.6666322
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 45 и 30 равна 21.1475156
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 45 и 30 равна 42.9999483
Ссылка на результат
?n1=61&n2=45&n3=30
Найти высоту треугольника со сторонами 148, 103 и 100
Найти высоту треугольника со сторонами 103, 95 и 16
Найти высоту треугольника со сторонами 109, 101 и 56
Найти высоту треугольника со сторонами 61, 58 и 50
Найти высоту треугольника со сторонами 79, 59 и 53
Найти высоту треугольника со сторонами 147, 144 и 126
Найти высоту треугольника со сторонами 103, 95 и 16
Найти высоту треугольника со сторонами 109, 101 и 56
Найти высоту треугольника со сторонами 61, 58 и 50
Найти высоту треугольника со сторонами 79, 59 и 53
Найти высоту треугольника со сторонами 147, 144 и 126