Рассчитать высоту треугольника со сторонами 61, 51 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 51 + 13}{2}} \normalsize = 62.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{62.5(62.5-61)(62.5-51)(62.5-13)}}{51}\normalsize = 9.05934872}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{62.5(62.5-61)(62.5-51)(62.5-13)}}{61}\normalsize = 7.57420959}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{62.5(62.5-61)(62.5-51)(62.5-13)}}{13}\normalsize = 35.5405219}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 51 и 13 равна 9.05934872
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 51 и 13 равна 7.57420959
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 51 и 13 равна 35.5405219
Ссылка на результат
?n1=61&n2=51&n3=13
Найти высоту треугольника со сторонами 148, 122 и 79
Найти высоту треугольника со сторонами 83, 80 и 55
Найти высоту треугольника со сторонами 121, 121 и 101
Найти высоту треугольника со сторонами 86, 85 и 5
Найти высоту треугольника со сторонами 145, 95 и 59
Найти высоту треугольника со сторонами 100, 84 и 48
Найти высоту треугольника со сторонами 83, 80 и 55
Найти высоту треугольника со сторонами 121, 121 и 101
Найти высоту треугольника со сторонами 86, 85 и 5
Найти высоту треугольника со сторонами 145, 95 и 59
Найти высоту треугольника со сторонами 100, 84 и 48