Рассчитать высоту треугольника со сторонами 61, 51 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 51 + 47}{2}} \normalsize = 79.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79.5(79.5-61)(79.5-51)(79.5-47)}}{51}\normalsize = 45.7713117}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79.5(79.5-61)(79.5-51)(79.5-47)}}{61}\normalsize = 38.267818}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79.5(79.5-61)(79.5-51)(79.5-47)}}{47}\normalsize = 49.6667425}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 51 и 47 равна 45.7713117
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 51 и 47 равна 38.267818
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 51 и 47 равна 49.6667425
Ссылка на результат
?n1=61&n2=51&n3=47
Найти высоту треугольника со сторонами 81, 75 и 71
Найти высоту треугольника со сторонами 125, 73 и 56
Найти высоту треугольника со сторонами 42, 37 и 26
Найти высоту треугольника со сторонами 71, 58 и 35
Найти высоту треугольника со сторонами 92, 88 и 79
Найти высоту треугольника со сторонами 144, 93 и 75
Найти высоту треугольника со сторонами 125, 73 и 56
Найти высоту треугольника со сторонами 42, 37 и 26
Найти высоту треугольника со сторонами 71, 58 и 35
Найти высоту треугольника со сторонами 92, 88 и 79
Найти высоту треугольника со сторонами 144, 93 и 75