Рассчитать высоту треугольника со сторонами 61, 52 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 52 + 41}{2}} \normalsize = 77}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{77(77-61)(77-52)(77-41)}}{52}\normalsize = 40.4998356}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{77(77-61)(77-52)(77-41)}}{61}\normalsize = 34.52445}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{77(77-61)(77-52)(77-41)}}{41}\normalsize = 51.3656452}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 52 и 41 равна 40.4998356
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 52 и 41 равна 34.52445
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 52 и 41 равна 51.3656452
Ссылка на результат
?n1=61&n2=52&n3=41
Найти высоту треугольника со сторонами 106, 91 и 34
Найти высоту треугольника со сторонами 121, 116 и 20
Найти высоту треугольника со сторонами 122, 107 и 107
Найти высоту треугольника со сторонами 140, 109 и 62
Найти высоту треугольника со сторонами 146, 137 и 97
Найти высоту треугольника со сторонами 125, 75 и 67
Найти высоту треугольника со сторонами 121, 116 и 20
Найти высоту треугольника со сторонами 122, 107 и 107
Найти высоту треугольника со сторонами 140, 109 и 62
Найти высоту треугольника со сторонами 146, 137 и 97
Найти высоту треугольника со сторонами 125, 75 и 67