Рассчитать высоту треугольника со сторонами 61, 52 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{61 + 52 + 51}{2}} \normalsize = 82}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{82(82-61)(82-52)(82-51)}}{52}\normalsize = 48.6726172}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{82(82-61)(82-52)(82-51)}}{61}\normalsize = 41.4914114}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{82(82-61)(82-52)(82-51)}}{51}\normalsize = 49.6269823}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 61, 52 и 51 равна 48.6726172
Высота треугольника опущенная с вершины A на сторону BC со сторонами 61, 52 и 51 равна 41.4914114
Высота треугольника опущенная с вершины C на сторону AB со сторонами 61, 52 и 51 равна 49.6269823
Ссылка на результат
?n1=61&n2=52&n3=51
Найти высоту треугольника со сторонами 145, 132 и 81
Найти высоту треугольника со сторонами 146, 136 и 98
Найти высоту треугольника со сторонами 77, 55 и 39
Найти высоту треугольника со сторонами 124, 104 и 21
Найти высоту треугольника со сторонами 127, 124 и 68
Найти высоту треугольника со сторонами 141, 116 и 68
Найти высоту треугольника со сторонами 146, 136 и 98
Найти высоту треугольника со сторонами 77, 55 и 39
Найти высоту треугольника со сторонами 124, 104 и 21
Найти высоту треугольника со сторонами 127, 124 и 68
Найти высоту треугольника со сторонами 141, 116 и 68